EVENTS AND PROBABILITIES

Definitions

- A process is random if it is known that when it takes place, one outcome from a possible set of outcomes is sure to occur, but it is impossible to predict with certainty which outcome that will be.
- A sample space is the set of all possible outcomes of a random process or experiment.
- An event is a subset of a sample space.

Equally Likely Probability Formula

- If S is a finite sample space in which all outcomes are equally likely, and E is an event in S, then the probability of E , denoted $\mathrm{P}(\mathrm{E})$ is

$$
P(E)=\frac{\text { the number of outcomes in } \mathrm{E}}{\text { the total number of outcomes in } \mathrm{S}}
$$

Probability Properties

Let S be a sample space and A, B events in S

- $0 \leq \mathrm{P}(\mathrm{A}), \mathrm{P}(\mathrm{B}) \leq 1$
- $P(\varnothing)=0$ and $P(S)=1$
- $\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)=1-\mathrm{P}(\mathrm{A})$
- $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
- Corollary: if A and B are disjoint, then $P(A \cup B)=P(A)+P(B)$

Expected Value

- If the possible outcomes of an experiment, or random process, are real numbers a_{1} to a_{n}, which occur with probabilities p_{1} to p_{n} respectively, then the expected value of the process is $\sum_{k=1}^{n} a_{k} p_{k}$

CONDITIONAL PROBABILITY

Definition

- Let A and B be events in a sample space S. If $P(A) \neq 0$, then the conditional probability of B given A, denoted $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$ is $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{P(A \cap B)}{P(A)}$

Properties:

- $\mathrm{P}\left(\mathrm{B}^{\mathrm{c}} \mid \mathrm{A}\right)=1-\mathrm{P}(\mathrm{B} \mid \mathrm{A})$
- Baye's Theorem: Given two events A and B s.t. $\mathrm{P}(\mathrm{B}) \neq 0$,
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{P(B \mid A) P(A)}{P(B)}$
- General Baye's Theorem: Suppose that a sample space S is a union of mutually disjoint events $A_{1}, A_{2}, \ldots, A_{n}$, and suppose B is an event in S with $\mathrm{P}(\mathrm{B}) \neq 0$
If k is an integer with $1 \leq \mathrm{k} \leq \mathrm{n}$, then $\mathrm{P}\left(\mathrm{A}_{\mathrm{k}} \mid \mathrm{B}\right)=\frac{P\left(B \mid A_{k}\right) P\left(A_{k}\right)}{\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)}$

INDEPENDENT EVENTS

Let A, B and C be events in a sample space S .

- A and B are independent iff $P(A \cap B)=P(A) \cdot P(B)$
- If A and B are independent events, then so are A and B^{c}
- If $\mathrm{P}(\mathrm{A}) \neq 0$ and $\mathrm{P}(\mathrm{B})) \neq 0$ but $\mathrm{A} \cap \mathrm{B}=\varnothing$, then the events A and B are not independent
- A, B, and C are pairwise independent iff they satisfy all the following conditions:
- $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
- $\quad \mathrm{P}(\mathrm{B} \cap \mathrm{C})=\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}(\mathrm{C})$
- $\mathrm{P}(\mathrm{C} \cap \mathrm{A})=\mathrm{P}(\mathrm{C}) \cdot \mathrm{P}(\mathrm{A})$
- A, B, and C are mutually independent iff they are pairwise independent and $\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B}) \cdot \mathrm{P}(\mathrm{C})$
- Generally: events A_{1} to A_{n} are mutually independent iff the probability of the intersection of any subset of the events is the product of the probabilities of the events in the subset.

